PRACTICE PROBLEMS FOR FINAL EXAM

1. Find all values of the constants m and b for which the function

$$f(x) = \begin{cases} \sin x & \text{if } x < \pi \\ mx + b & \text{if } x \ge \pi \end{cases}.$$

- **a**. is continuous at $x = \pi$.
- **b**. differentiable at $x = \pi$.
- 2. Calculate the following limits

(a).
$$\lim_{x\to 0} \frac{\sin(101x)}{x+1-\cos(x)}$$
, (b) $\lim_{x\to 0} \frac{\int_{x}^{x^{2}} \sin t \, dt}{x}$, (c). $\lim_{x\to \infty} \frac{\sin(x)}{e^{x}}$, (d). $\lim_{x\to \infty} \frac{e^{x}-e^{-101x}}{e^{x}+e^{-101x}}$

3. Find the tangent line and normal line equations at (1,-1) for the curve

$$x^3 - y\sin(x+y) = 1.$$

4. For the function below

$$y = (101^x + 1)^{1/x}$$

- **a.** Find $\lim_{x\to\infty} (101^x + 1)^{1/x}$
- **b.** $\frac{dy}{dx}(1) = ?$

5. Find the linearization of the function

$$G(x) = \sqrt{1 + 2x}$$

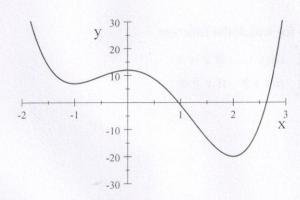
at the point x = 4. Calculate $\sqrt{8.96}$ approximately by utilizing the linearization of G.

- 6. The area of a circular region is increasing at a rate of 96π square meters per second (m^2/sec) . When the area of region is 64π square meters, how fast is **the radius of the region** increasing in meters per second?
- **7**. By utilizing the Mean Value Theorem, show that $x^5 + 15x + 1 = 0$ has a unique solution (i.e. zero).
- 8. Find the absoluate maximum and minumum values of the function $h(x) = 2\sin(x) \sin^2(x)$ in $[0, 2\pi]$. Sketch the graph of f(x) by following the steps below:

$$f(x) = \frac{x}{x + \pi}$$

- **a**. Find the domain, x –intercept and y –intercept.
- **b**. Find the asymptotes (if they exist!).
- **c**. Determine critical points, the intervals at which f(x) increases and decreases, and local max/min values
- **d**. Determine the intervals at which f(x) is concave up or down, and inflection points.
- **e**. Make a table consisting of all information above and then skech the graph of f(x).

9. The graph of y = f(x) is given below and $F(x) = \int_0^x f(t)dt$.



Find the critical points of F. Determine the intervals at which F is increasing, decreasing, concave up and concave down.

10. Sketch the graph of g(x) by following the steps below:

$$g(x) = \frac{e^x}{x}$$

- **a**. Find the domain, x –intercept and y –intercept.
- b. Find the asymptotes (if they exist!).
- **c**. Determine critical points, the intervals at which g(x) increases and decreases, and local max/min values
- **d**. Determine the intervals at which g(x) is concave up or down, and inflection points.
- **e**. Make a table consisting of all information above and then skech the graph of g(x).
- 11. Determine the dimensions of the rectangle of largest area that can be inscribed in a semicircle of radius 3.
- **12**. Evaluate the following integrals

(a).
$$\int \frac{(\ln x)^2}{17x} dx$$
 (b) $\int \tan^3 x \sec x dx$, (c). $\int \frac{x+2}{x^2+2} dx$, (d). $\int \frac{x^2}{\sqrt{4x-x^2}} dx$

(d).
$$\int_{2}^{5} \sqrt{1 + x^4} x^7 dx$$
 (e) $\int \frac{x^4}{x^4 - 1} dx$, (f). $\int x^3 \ln x dx$, (g). $\int \frac{\sqrt{x - 1}}{x} dx$

13. Determine whether the following improper integrals are convergent OR divergent:

(a)
$$\int_0^1 \frac{1}{\sqrt{x}(1+\sqrt{x})} dx$$

(b)
$$\int_{1}^{\infty} \frac{2 - e^{-x}}{x^{5/2}} dx$$